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Abstract
Within the framework of PT -symmetric quantum mechanics of bound states
(which works with parity-pseudo-Hermitian Hamiltonians H = PH †P and
real spectra) we mimic some effects of the double-well structure of potentials
by a pair of δ functions with mutually complex conjugate strengths. The model
is solvable by the standard matching technique and exhibits several interesting
features. We observe an amazingly robust absence of any PT -symmetry
breaking. A quasi-degeneracy which occurs in the high-energy domain is
interpreted as a manifestation of certain ‘quantum beats’.

PACS numbers: 03.65.Fd, 03.65.Ca, 03.65.Ge, 03.65.Bz

1. Introduction

In current textbooks, many phenomena (e.g., vibrational spectra) and methods (e.g.,
perturbation expansions) of quantum mechanics are best illustrated by the one-dimensional
Schrödinger equation for bound states in a real and symmetric well V (x) = V ∗(x) = V (−x),[

− d2

dx2
+ V (x)

]
ψ(x) = Eψ(x). (1)

In such a setting, the transition of the so-called PT -symmetric quantum mechanics (say, in its
form proposed by Bender and Boettcher [1]) may most easily be illustrated by an inclusion of
an asymmetric and purely imaginary additional potential in the same equation,

V (x) = VS(x) + iVA(x) VS(x) = V ∗
S (x) = VS(−x) VA(x) = V ∗

A(x) = −VA(−x).

(2)

Exactly solvable examples abound [2, 3]. As their most elementary and transparent example
we may recollect the harmonic oscillator in D dimensions [4] with

V (x) = �(� + 1)

(x − ic)2
+ B(x − ic)2 c > 0. (3)
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Here, the centrifugal barrier is regularized and proportional to � = (D − 3)/2 + m in the mth
partial wave.

The studies of models (2) also often involve much more complicated potentials, which are
not exactly solvable. An encouragement is provided by their more immediate applicability as
well as by the efficiency of many semiclassical [5], perturbative [6] and/or purely numerical
techniques [7]. In the pioneering paper, Caliceti et al [8] paid attention to the very unusual
imaginary cubic PT -symmetric anharmonicity. Within sophisticated perturbation theory, she
(together with her co-authors) succeeded in showing that in spite of the non-Hermiticity of the
Hamiltonian, the spectrum of energies may remain real.

Buslaev and Grecchi [9] returned to the more standard, quarticPT -symmetric anharmonic
oscillator

V (x) = �(� + 1)

(x − ic)2
+ B(x − ic)2 + D(x − ic)4 c > 0 (4)

with a similar motivation stemming from field theory [10]. They were the first who
demonstrated that the bound-state energies of a non-Hermitian, PT -symmetric model (4)
may coincide with the spectrum of a certain Hermitian double-well problem. Their
sophisticated and explicit, Fourier-type equivalence transformation between the Hermitian
and non-Hermitian partners may be now better understood in the language of Mostafazadeh
[11].

Let us note that the presence of the centrifugal term in equation (4) played an important
technical role in [9], while a similar term has been absent in all the original studies of the
imaginary cubic forces [5, 8]. Curiously enough, only a reintroduction of this term in the
generalized model

V (x) = �(� + 1)

(x − ic)2
+ B(x − ic)2 + iC(x − ic)3 c > 0 (5)

seems to have opened the way towards the rigorous proof of the reality of the spectrum of
the imaginary cubic oscillators [12]. In the light of this proof, the special regular case of
equation (5) with vanishing �(� + 1) = 0 is not exceptional at all. In contrast, the inclusion
of a strong repulsion �(� + 1) � 1 in equation (5) seems instructive and productive in having
paved the way towards the recent clarification of the applicability of the current 1/� technique
in the PT -symmetric context in [13]. Thus, we shall assume that � is large in all the potentials
of type (3), (4) or (5). At this point, we get quite close to the subject of our present paper
since the implementation of the 1/� technique proved entirely different in the Hermitian and
PT -symmetric models, and we intend to re-analyse the latter case via certain simplified
models.

2. Double wells

All three PT -symmetric potentials (3)–(5) offer a very good testing ground for the comparison
of the Hermitian and PT -symmetric calculations. Firstly, they may serve as an elementary
illustration of the 1/� technique in the Hermitian case because their Hermitian versions
emerge simply in the limit c → 0. Secondly, one immediately notes that such a step is not
mathematically trivial since their centrifugal barriers become strongly singular. Fortunately,
this does not play any role at all because simultaneously, we have to ‘shrink’ the full real
axis of the coordinates to the mere positive ‘radial’ half-axis [4]. A fully rigorous discussion
of this point is available in [9] and enables us to reinterpret our differential Schrödinger
equation (1) with the real and constrained coordinates x = xHermitian = x(c=0) > 0 as the
standard central bound-state problem on the half-axis. In such a context, the perturbative 1/�
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recipe (as reviewed, e.g., in paper [14] and/or in many other references which are quoted
therein) is virtually trivial. One simply imagines that the potential V (x) possesses an absolute
minimum at some real and positive coordinate R > 0 (for example, in equation (3) we get
the unique minimum at R = [�(� + 1)/B]1/4, etc). In the vicinity of this minimum, the
shape of the potential V (x) may be approximated by an appropriate harmonic oscillator well,
V (R + ξ) ≈ const + ω2ξ 2 + O(1/R). At this point one discovers that the quality of the latter
‘zero-order’ approximation increases quickly with the growth of �. Moreover, the expansion
of the binding energies and wavefunctions in the powers of 1/R remains feasible and exhibits
very good convergence properties in practice [14].

After a return to the non-Hermitian equation (1) with x ∈ (−∞,∞), an application of the
same idea requires a much more careful analysis. As long as all our sample potentials V (x)

remain smooth, analytic and confining for all the shift parameters c �= 0, our wavefunctions
ψ(x) stay analytic and normalizable all over the lower half-plane of the complex plane of x
[1]. At the same time, the manifest non-Hermiticity of our sample Hamiltonians at c > 0 leads
to the necessity of a reinterpretation of their eigenstates. In the spirit of our remarks [15, 16]
(cf also the later reviews [11, 17]), one must replace the concepts of Hermiticity by pseudo-
Hermiticity while the unitarity becomes weakened to pseudo-unitarity. As a consequence, the
probabilistic interpretation of PT -symmetric quantum mechanics acquires the forms which
find their immediate guidance in the relativistic quantum mechanics, with one of the most
popular examples provided by the Feshbach–Villars pseudo-Hermitian reformulation of the
Klein–Gordon equation [18].

The net consequence of all these introductory remarks is that within the framework of our
above exemplification of the PT -symmetric quantum mechanics we are free to work with any
complex coordinate R of the minimum of V (x). As long as we assume that �(� + 1) � 1 is
large, we discover that there exist many minima R generating, in principle, many alternative
large-� expansions. For example, equation (3) with c > 0 gives the minimum of V (x)

whenever x4 = R4 = �(� + 1)/B. Even in this trivial example (where we know all the
final solutions in advance!), we have no clear criterion for the choice not only between the
above-mentioned real R = R(+) = � (with the large � = |[�(� + 1)/B]1/4| � 1) and its
negative partner R(−) = −�, but also between the two new purely complex extremes at
R = R(lower) = −iθ and R = R(upper) = R∗

(lower) = +iθ (with the same real parameter
θ = � � 1). Moreover, the transition to the potentials (4) and (5) (both with B = 0 for
simplicity) gives the respective rules R6 = �(� + 1)/(2D) and iR5 = 2�(� + 1)/(3C) so that,
generically, one has to deal with several pairs of the complex minima such that

V (R + ξ) ≈ �2ξ 2 R = R(±) = ±� − iθ �2 = �2
(±) = ω2 ± iη (6)

where we only know that |R| � 1. In such a setting, we may choose the shift of the axis in
such a way that c ≡ θ , without causing any change in the spectrum of course.

A fully exhaustive discussion of the particular cubic example (5) may be found in [13].
For the simpler quartic oscillator (4), the same large-� construction would lead to vanishing
and non-vanishing θ at the positive and negative couplings D > 0 (occurring, e.g., in [19]) and
D < 0 (chosen, e.g., in [9, 20]), respectively. Thus, in contrast to the Hermitian case where the
real position of the absolute minimum of V (x) is unique in the majority of cases of practical
interest, the regularization mediated by the shifts c �= 0 leads, in accordance with the pattern
(6), to the most frequent occurrence of two symmetric minima in V (x) at once. Now we may
conclude our introductory considerations by a declaration that any PT -symmetric double
well (6) with the complex (and complex conjugate) strengths �2

(±) has not been found solvable
in our preceding paper [13], and that this offered the main motivation for our forthcoming
considerations, therefore.
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3. The model

We shall try to simulate the effects of the general double attraction in the following schematic
square-well-like model:

V (x) = (−ω2 − iη)δ(x + a) + (−ω2 + iη)δ(x − a) x ∈ (−1, 1) (7)

where, in the spirit of [3], the forces are reduced to the mere PT -symmetric pair of the delta
functions at a distance measured by the variable a ∈ (0, 1). This means that we plan to solve
equation (1) with the boundary conditions

ψ(±1) = 0
d

dx
ψ(±a + 0) − d

dx
ψ(±a − 0) = (−ω2 ± iη)ψ(±a) (8)

by the standard matching technique as described in textbooks [21]. Under the usual PT -
symmetric normalization convention [16]

ψ(x) = ψS(x) + iψA(x) ψS(x) = ψ∗
S (x) = ψS(−x) ψA(x) = ψ∗

A(x) = −ψA(−x)

(9)

this enables us to denote E = κ2 in the obvious ansatz for the wavefunctions on the three
sub-intervals of the whole domain in question,

ψ(x) =




ψL(x) = (α − iβ) sin κ(x + 1) x ∈ (−1,−a)

ψC(x) = γ cos κx + iδ sin κx x ∈ (−a, a)

ψR(x) = (α + iβ) sin κ(−x + 1) x ∈ (a, 1)

. (10)

Moreover, as long as we have

ψ ′(x) =




ψ ′
L(x) = κ(α − iβ) cos κ(x + 1) x ∈ (−1,−a)

ψ ′
C(x) = −κγ sin κx + iκδ cos κx x ∈ (−a, a)

ψ ′
R(x) = −κ(α + iβ) cos κ(−x + 1) x ∈ (a, 1)

(11)

the appropriate insertions in equation (8) lead to the four-by-four matrix set of equations



sin κ(1 − a) 0 −cos κa 0
0 sin κ(1 − a) 0 −sin κa

−µ(ω) ν(η) sin κa 0
ν(η) µ(ω) 0 cos κa







α

β

γ

δ


 = 0. (12)

Here, µ(ω) = cos κ(1 − a) − ω2κ−1 sin κ(1 − a) and ν(η) = ηκ−1 sin κ(1 − a) are mere
abbreviations.

We may conclude that the matching conditions may be satisfied if and only if the secular
determinant F(κ) vanishes in equation (12). This condition has the following form:

F(κ) = (2κ) +
ω2

κ
[cos(2κ) − cos(2κa)] +

ω4 + η2

κ2
sin(2κa) sin2[2κ(1 − a)] = 0. (13)

Its main merit is its compact form, not quite expected in the light of the previous complicated
matching formula (12). By its structure it resembles the textbook solution of the simple square
well so that, in this sense, it is a mere implicit representation of the spectrum itself. In fact, one
might even believe that an explicit construction of this spectrum might be possible (say, in the
form of an infinite power series in some of the parameters) but due to the utterly elementary
character of equation (13), one might still deduce the majority of the relevant features of the
spectrum from this implicit definition. In order to demonstrate this expectation in detail, the
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Figure 1. The sinus-like left-hand side curve F(κ) of equation (13) in the weakly perturbed
square-well regime, i.e., at a ‘large’ distance a = 0.95 of the ‘shallow’ wells with a weak strength
ω = 1.5 and with a (virtually irrelevant) asymmetry measure η = 20.

roots of equation (13) will be studied here via the graphs of the function F(κ). In this sense,
we shall determine and display the various qualitative features of the spectrum of the energies
En = κ2

n in a series of pictures, via their presentation in the form of the sequences of the nodal
zeros κn of the function F(κ).

4. Discussion

The results of our study are sampled in figures 1–7 for the different sets of couplings. In all
these cases we observed, first of all, that the influence of the changes of η is not too relevant
so that we have fixed, in all our pictures, η = 20 for the sake of definiteness.

In figure 1 we simulated the system of two weakly attractive wells which lie far from
each other. We see that the choice of a = 0.95 and ω = 3/2 still leads to the mere very weak
perturbation of the very well-known spectrum of the ω = 0 energies in a square well. The
function F(κ) oscillates very regularly and its overall amplitude, although not quite constant,
exhibits just a small slow variation and remains almost independent of our choice of the
interval of κ (the figure takes κ = √

E ∈ (0, 15)).
In figure 2 we see that for the same distance of the wells, the growth of their attractive

strength up to ω = 15 000 leads to significant growth of the average magnitude of the amplitude
of F(κ) and to the emergence of an ‘envelope’ (i.e., an auxiliary curve Fav(κ) which connects
the maxima or minima) with much slower oscillations. In addition we discover an overall
asymptotic decrease of Fav(κ) and certain less apparent periodic structure when we try to
connect some of the ‘subdominant’ local maxima/minima of F(κ).
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Figure 2. Graphical determination of the high-lying energies E = κ2 (at nodes of F(κ)) for a
very strong attraction at ω = 15 × 103 (the other parameters are the same as in figure 1).
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Figure 3. A shortening of the ‘beats’ of figure 2 after the shortening of the distance between wells
to a = 0.85.
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Figure 4. The emergence of overlaps between multiple ‘beats’ at a still shorter distance
a = 0.65.
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Figure 5. A return to the lowest energy levels in figure 4 and to the weaker attraction with ω = 150.
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Figure 6. The quasi-degeneracy of levels for the ‘deep’ wells with ω = 15×103 at a comparatively
small distance a = 0.35.
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Figure 7. Same as figure 6, with a ‘wobbling-type’ irregularity in the energy nodes for ‘shallow’
wells with ω = 150.
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Figures 3 and 4 show the effect of the movement of the two wells towards each other.
Even a not too significant shortening of their distance (to a = 0.85 and a = 0.65, respectively)
shows that the period of the envelopes becomes shorter and, in the latter case, one can see a
clear competition between several parallel envelopes which start to overlap each other.

In order to reveal the latter pattern clearly, we omitted the low-lying levels. This enabled
us to see that the interplay between different periods remains fairly regular. Step by step, it
introduces a much more complicated pattern to the energy spectrum, anyhow. The separate
levels behave in a more and more chaotic manner, especially when we return to the low-lying
part of the spectrum in a way illustrated in figure 5 where we kept a = 0.65 and weakened
ω = 150.

The remarkable feature of all this pattern is that our numerical experiments never revealed
a merger of the two levels followed, presumably, by their disappearance in the complex plane.
In the other models, such a phenomenon may exist and is usually interpreted as the so-
called spontaneous PT -symmetry breaking [22]. Here, figure 6 with the fairly small distance
a = 0.35 (and with the original very strong ω = 15 × 103) illustrates the situation where one
gets very close to such a possibility and where several pairs of the real energies appear to be
almost degenerate.

In figure 7 where ω = 150, we finally demonstrate that the ‘chaotic’ character of the
eigenvalues in our schematic and exactly solvable PT -symmetric point-interaction double
wells may be weakened and partially removed by a return to their weaker strengths. We
see in the picture that the characteristic pairwise ‘irregular’ quasi-degeneracies persist. This
type of irregularity has a slightly different source in an ultimate slowdown of the oscillations
of the envelopes, the ‘wobbles’ of which become comparable to the nodal distances.

We may summarize that the double-well-like structure of our complex, non-Hermitian
example complies with some of our intuitive expectations. Thus, the ‘robust’ reality of the
spectrum or an emergence of the quasi-degeneracy has been reconfirmed. At the same time,
a few other observations (say, of the multiple and/or superimposed ‘beats’ in the curve F(κ))
wait for a deeper understanding and/or a generic explanation in the future.
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